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A B S T R A C T

This paper investigates the use of standardised precipitation index (SPI) and the enhanced vegetation index (EVI)
as indicators of soil moisture. On the other hand, we attempted to produce a drought sensitivity map (DSM) for
vegetation cover using two one-class support vector machine (OC-SVM) algorithms. In order to achieve
promising results a combination of both 30 years statistical data (1978 to 2008) of synoptic stations and 10 years
MODIS imagery archive (2001 to 2010) are used within the boundary of Kermanshah province, Iran. The
synoptic data and MODIS imagery were used for extraction of SPI and EVI, respectively. The objective is,
therefore, to explore meaningful changes of vegetation in response to drought anomalies, in the first step, and
further extraction of reliable spatio-temporal patterns of drought sensitivity using efficient classification
technique and spatial criteria, in the next step. To this end, four main criteria including elevation, slope, aspect
and geomorphic classes are considered for DSM using two OC-SVM algorithms. Results of the analysis showed
distinct spatio-temporal patterns of drought impacts on vegetation cover. The receiver operating characteristics
(ROC) curves for the proposed DSM was used along with the simple overlay technique for accuracy assessment
phase and the area under curve (AUC = 0.80) value was calculated.

1. Introduction

Global warming affects evapotranspiration, which is the movement
of water into the atmosphere from land, water surfaces and plants due
to evaporation and transpiration. This is expected to increase to both
drought severity measure and geographic expansion of dry areas. When
discussing drought, one must have a proper understanding of aridity
and the difference between the two. Climatologically, aridity is defined
as “the degree to which a climate lacks effective, life-promoting
moisture” while drought is “a period of abnormally dry weather
sufficiently long enough to cause a serious hydrological imbalance”
(Hayes et al., 2011). Aridity is measured by comparing long-term
average precipitation and evapotranspiration. It is obviously a perma-
nent climatic characteristic. In this regard, the arid climate indicates
that average long-term evapotranspiration is greater than average long-
term precipitation value. On the other hands, drought refers to the
moisture balance that is mainly estimated on the annual, seasonal or
monthly basis. As opposed to aridity, drought is a transient climatic
idiosyncrasy (Lioubimtseva and Adams, 2004). Despite the apparent
simplicity of this definition, due to its long-term development and

duration, the progressive characteristics of its impacts and spatial
extent, drought is the most complex natural hazard to identify, analyse,
monitor and manage (Burton, 1993; Vicente-Serrano et al., 2012;
Wilhite, 2012).

Nowadays, with progressive human development and subsequent
climate change, drought monitoring and impact assessment program is
of great importance (Zambrano et al., 2017). In order to reduce the
drought vulnerability of the affected regions, it is vital to truly
comprehend spatio-temporal drought patterns and their subsequent
impacts. This will facilitate fulfilments of further measures focused on
promoting both drought risk mitigation and preparedness. Risk mitiga-
tion simply refers to long-term measures for reducing the risk including
the development of technological solutions, legislation, land-use plan-
ning, insurance, etc. (Vicente-Serrano et al., 2012). Basically, risk
mitigation measures should be implemented through accurate identifi-
cation of risks and promotion of the risk perception which are acquired
within preparedness phase (Bird, 2009). Preparedness refers to the
development of various emergency plans and warning systems aimed
for efficient decision making and acting once the disaster strikes or even
it is anticipated.
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During the last decades, different types of drought indices (DIs),
including climatic or satellite-derived DIs for regional to global scale
drought assessment and monitoring have been developed and imple-
mented. Climatic DIs such as percent of normal, standardised precipita-
tion index (SPI) (Cancelliere et al., 2007; Cui et al., 2015; He et al.,
2015; Sönmez et al., 2005; Zhang et al., 2009), deciles, palmer drought
severity index (PDSI) (Dai, 2011; Dai et al., 2004; Li et al., 2007), crop
moisture index (CMI) (Keyantash and Dracup, 2002; Quesney et al.,
2000), surface water supply index (SWSI) (Shafer and Dezman, 1982;
Son et al., 2012) etc. aimed to unify thousands of bits of climatological
data such as rainfall, snowpack, stream flow and other water supply
indicators into a comprehensible quantitative measure. A climatic DIs
typically depicts how much the climate of specified geographic location
in a given period has deviated from historically established normal
conditions (Jairath, 2008; Mu et al., 2013; Narasimhan and Srinivasan,
2005; Pai et al., 2011; Werick et al., 1994). On the other hand, variety
of satellite DIs including: normalized difference vegetation index
(NDVI), vegetation condition index (VCI), temperature condition index
(TCI), enhanced vegetation index (EVI) etc. also developed to quantify
the drought impact on soil and/or natural vegetation cover (Bhuiyan
et al., 2006; Chang et al., 2010; Huete et al., 2002; Toulios et al., 2012).

Introduction and evaluation of novel spatial methodologies for the
identifying the measure of persistence and resilience of an ecosystem
despite climate change constitutes a research priority of global rele-
vance. As drought is identified one major issues of global climate
variability, therefore, we present a novel approach to assess the relative
sensitivity of vegetation cover, as a major constituent of any ecosys-
tems, to drought.

Since many different DIs have been used in drought monitoring and
drought sensitivity mapping studies, in an attempt to find an optimal
solution and to consolidate the accuracy of obtained results, we
calculated and further compared two different DIs including: 1. The
standardised precipitation index (SPI) as a climatic DI and 2. Enhanced
vegetation index (EVI) as satellite-derived DI. Afterwards, we made an
effort to assess vegetation cover sensitivity to drought which is simply
ecosystem sensitivity to short-term climate variability and regions of
amplified vegetation response (Seddon et al., 2016). A novel method to
identify different sensitivity classes of a drought sensitivity map (DSM)
with respect to changes in elevation, slope, aspect and geomorphic
criteria is implemented for this purpose. Two one-class support vector
machine (OC-SVM) algorithms were beneficially used to obtain the final
DSM.

The paper is organized as follows: after a description of the study
area in Section 2, a detailed definition of the material and methods of
the research is described in Section 3. Section 4 presents results while
Section 5 belongs to a short discussion and conclusions.

2. Description of study region

Kermanshah province is located between 32°36′ to 35°15′ N latitude
and 45°24′ to 48°30′ E longitude in north-western Iran and it is
considered a part of the structural zone of Folded Zagros in the
boundary of Arabian and Iran plate (Fig. 1). It has a climate which is
heavily influenced by the proximity of the Zagros Mountains, classified
as a hot dry summer with rather cold winters and there are usually
rainfalls in fall and spring. Kermanshah climate is classified as typical
Mediterranean climate (Csa) in Köppen-Geiger classification.

The minimum amount of precipitation occurs in June with the
average of 0 mm while the maximum amount occurs in March, with an
average of 76 mm. The city's altitude and exposed location relative to
westerly winds makes precipitation a little bit high with a total annual
precipitation average 478.7 mm. However, at the same time, it
produces huge diurnal temperature swings especially in the virtually
rainless summers, which remain extremely hot during the day. The
annual average temperature of Kermanshah is 14.2 °C while the
average monthly temperatures vary by 27.6 °C. Kermanshah also

experiences snow cover for at least a couple of weeks in winter.
Arid and semi-arid regions cover almost 40% of the world's land

(Aydin, 1995; Bannayan et al., 2010) and according to the climate
models during the twenty-first century in the semi-arid Mediterranean,
severe water loss will be caused by the climate variability (Houghton
et al., 2001).Therefore, Kermanshah province of Iran could be an ideal
study area for drought studies.

3. Material and methods

3.1. Data

Here, posterior to the extensive review of the relevant literature; we
selected three main categories of related geospatial data. First, 30 years
(from 1978 to 2008) collection of mean monthly precipitation obtained
from 13 different Iranian Meteorological Organization (IMO) stations
(i.e. climatological, synoptic and rain gauge stations) throughout
Kermanshah province. Second, MOD 13 or enhanced vegetation index
(EVI) of Terra series to effectively use as a satellite-derived DI for
10 years from 2001 to 2010. Third, 90-meter resolution digital eleva-
tion model (DEM) products of the Shuttle Radar Topography Mission
(SRTM) and geomorphic unit maps of the study region used for
extraction of spatio-temporal changes of drought patterns.

We also used an inventory of the most negative and positive changes
in EVI value containing 842 first negative along with 842 first positive
points of EVI change for both training OC-SVM algorithm and further
validation of proposed DSM. It also must be noted that database of the
most negative and positive changes in EVI was produced by differ-
entiating EVI values of mild and severe drought which have accrued
during the 2006 and 2008. In terms of mentioned EVI inventory, it was
randomly split into a train (≈67%) and test (≈33%) samples for
training the proposed DSM and subsequent validation purpose, prior
and posterior map elaboration, respectively.

3.2. Methodology

The proposed methodology has three steps: in step 1, we calculated
the standardised precipitation index (SPI), as one of the most widely
used climatic DIs. Accordingly, in step 2, to establish the satellite-
derived DI of considered study region, the EVI was used. Finally, the
obtained results of the two first steps were used for subsequent analysis
of spatio-temporal changes of drought impact on vegetation cover and a
drought sensitivity map was then produced using two one-class support
vector machine algorithms in step 3 (see Fig. 2).

3.2.1. Standardised precipitation index (SPI)
The standardised precipitation index (SPI) was proposed by (McKee

et al., 1993) and if it is not the most widely used DIs (Belal et al., 2014;
Jain et al., 2010; Karavitis et al., 2011), it is considered as one of most
popular DIs of drought monitoring and assessment (Jiang et al., 2008;
Liu et al., 2013; Mu et al., 2013; Vicente-Serrano et al., 2012). SPI is
based on the probability of precipitation for any time scale. In other
words, it is a simple index which is the number of standard deviations
that the observed precipitation deviates from the long-term mean (i.e.
30 years), assuming a normal distribution. The SPI was designed for
quantification of precipitation deficit for various time scales. These time
scales reflect the impact of drought on the availability of the different
water resources. Soil moisture conditions respond to precipitation
anomalies on a relatively short scale. Groundwater, stream flow, and
reservoir storage reflect the longer-term precipitation anomalies.
Accordingly, McKee et al. (1993) originally calculated the SPI for 3,
6, 12, 24, and 48–month time scales (see Table 1).

3.2.2. Enhanced vegetation index (EVI)
The enhanced vegetation index (EVI) is one of the most popular

satellite-based vegetation indices produced for the Terra and Aqua
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Moderate Resolution Imaging Spectroradiometers (MODIS). It is an
‘optimised’ index designed to enhance the vegetation signal with
improved sensitivity in high biomass regions. It further improves
vegetation monitoring through minimising both soil and atmosphere
influences (Jiang et al., 2008). EVI is one of widely used satellite
vegetation greenness indices which have been successfully used to
monitor global vegetation photosynthetic activity (Huete et al., 2002;
Jiang et al., 2008; Justice et al., 2002; Tucker, 1979). Drought indices
derived from satellite imagery have been widely used to identify spatial
extents of drought (Vergni and Todisco, 2011). The indices are useful
for detection and monitoring large area vegetation stress resulted from
drought or soil oversaturation following flooding and excessive rains.
This soil and atmosphere resistant vegetation index is defined by
(Solano et al., 2010):

⎛
⎝⎜

⎞
⎠⎟EVI P P

L P C P C P
= G −

+ − −
nir red

nir red blue1 2 (1)

where P is ‘apparent’ (top-of-the-atmosphere) or ‘surface’ directional
reflectance, L is a canopy background adjustment term equal to 1, G
gain factor and another constant equal to 0.2 and C1 and C2 weigh the
use of the blue channel in aerosol correction of the red channel
estimated about 6 and 7.5, respectively.

3.3. One-class support vector machine

Support vector machine (SVM) is a supervised learning method
derived from statistical learning theory and the structural risk mini-
mization principle (Boser et al., 1992; Vapnik, 2013; Vapnik and
Vapnik, 1998). It uses a decision surface to separates the target classes
through maximisation of the margin between them (Burges, 1998). The
mentioned surface is usually called the optimal hyperplane, and the

data points closest to the hyperplane are called support vectors (Fig. 3).
It should be noted that the support vectors are considered critical
elements of the training set.

However, often support vector machines are an example of a linear
two-class algorithms are aimed to maximize the margin between the
two classes (Fig. 4a), it could be used for one-class classification
purpose, where one tries to detect one class and reject the others
(Fig. 4b) (Deo et al., 2017; Gunn, 1998; Muñoz-Marí et al., 2010).

The one-class support vector machine (OC-SVM) was proposed by
(Schölkopf et al., 2001) to estimate a set that encloses most of a given
random sample where xi∈Rd. Each xi is first transformed via a map
φ :Rd→H where H is a high (possibly infinite) dimensional Hilbert
space generated by a positive-definite kernel k(xi,yi). The kernel
function corresponds to an inner product in H through k(xi,yi)=
〈φ(xi),φ(yi)〉.The OC-SVM speculates a hyperplane in the feature space
which detaches the data from the origin with maximum possible margin
(Fig. 4b). In the event that no such hyperplane exists, slack variables ξi
allow for some points to be within the margin, and the free parameter
v∈[0,1] controls the cost of such violations. In fact, v can be shown to
be an upper bound on the fraction of points within the margin (outliers)
(Schölkopf et al., 2001). The hyperplane in feature space induces a
generally nonlinear surface in the input space. More precisely, the OC-
SVM as presented in (Schölkopf et al., 2001) (Tax and Duin, 1999)
requires the solution of the following optimisation problem:
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Here, ω is a vector perpendicular to the hyperplane in H, and ρ is the

Fig. 1. Location map of the study area.
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distance to the origin. Since the training data distribution may contain
outliers, a set of slack variables ξi≥0 is introduced to deal with them
(which allows for penalised constraint violation), as usual in the SVM

framework. The parameter v∈[0,1] controls the trade-off between the
number of examples of the training set mapped as positive by the
decision function f(x)= sng(w,Φ(xi))−p and having a small value of
‖w‖ to control model complexity. Finally, it must be noted that it is
possible to segregate two patterns either through one two-class support
vector machine (TC-SVM) or two OC-SVMs, which the latter produces
more conservative decision regions (Elshinawy et al., 2010).

3.4. Kernel functions

The performance of the SVM model depends on the choice of the
kernel parameters. Accordingly, selection of the kernel function is very
important in SVM modelling (Xu et al., 2012). However new kernels are
being proposed by researchers, four kinds of them are often used: linear
kernel, polynomial kernel, RBF kernel (often called Gaussian kernel)
and sigmoid kernel as the last one (Brereton and Lloyd, 2010; Hsu et al.,
2003). In the present study, we have chosen RBF kernel as the most
popular kernel functions of the SVM algorithm.

3.4.1. Radial basis functions (RBF)
RBF has received significant attention in various kernelized learning

algorithms (Hsu et al., 2003). It is simply defined as:

k x x γ x x γ( , ) = exp(− , ), ≻0i j i j
2 (4)

where γ≻0 is a parameter that controls the width of Gaussian
distribution. It plays a similar role as the degree of the polynomial
kernel in controlling the flexibility of the resulting algorithm (Ben-Hur
and Weston, 2010).

Fig. 2. Schematic representation of the 3-step methodology implementation.

Table 1
Drought category of SPI value (McKee et al., 1993).

SPI value Drought category Time in category (%)

0 to −0.99 Mild 34.1
−1.00 to −1.49 Moderate 9.2
−1.50 to −1.99 Severe 4.4
≤−2.00 Extreme 2.3

Fig. 3. Optimal separating hyperplane (Gunn, 1998).
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3.5. Jeffries-Matusita (JM) separability measure

With respect to the fact that drought sensitivity mapping was the
goal of the present study, the assessment focused on distinguishing the
most sensitive from the least sensitive class. Here, separability degree of
sensitivity classes was assessed through Jeffries-Matusita (JM) separ-
ability approach that used both training subsets including more and less
sensitive location. The JM distance between a pair of class-specific
probability functions is defined as following (Richards and Jia, 1999):

∫J p x w p x w dx= ( ( ) − ( ) )ij

x

i j
2

(5)

where p(x|wi) and p(x |wj) are conditional probability density functions
for the feature vector x, given in data classes of wi = more sensitive and
wj = less sensitive events respectively. Under normally distributed
classes this becomes:
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In this notation, mi and mj correspond to class-specific, expected
sensitivity values, and ∑i and ∑j are unbiased estimates for the class-

specific covariance matrices of more and less sensitive subsets respec-
tively, ln is the natural logarithm function, |∑i| and |∑j| are the
determinant of ∑i and ∑j (matrix algebra). JM separability measure
takes on a maximum value of 2.0, and values above 1.9 indicate
assuring separability (Richards and Jia, 1999). For lower separability
values, it should be taken into consideration to improve the separability
by editing the position of more sensitive points which are located in less
sensitive areas, vice versa. Here, the achieve value for the more and less
sensitive separability measure was equal to 1.976 which suggests that
the two more and less sensitive training subsets may be distinct with
high separability.

4. Results

When drought occurs through an extended period, a region receives
a deficiency in its water supply, whether atmospheric, surface or
ground water. In other words, as a result of drought stream and river
flows decline, water levels in lakes and reservoirs fall, and the depth to
water in wells increases. This will further leads to decrease in soil
moisture, which in long-term primary controls vegetation and ecosys-
tems. Unlike the above mentioned immediate impacts of drought,
however, long-term impacts could be harder to monitor and more
costly to manage in the future. Here, we have used 30-years of monthly
precipitation data for SPI calculation which was used to quantify the
precipitation deficits for multiple time scales.

In this study, the SPI has been calculated for time-scales of 1 month
for each year. Fig. 5 shows the SPI values for a time-scale of 1978
through 2008. As can been seen from Fig. 5, the minimum SPI value

Fig. 4. Typical support vector machines classifiers: a) Two Class SVM (Gunn, 1998) b) One Class SVM (Muñoz-Marí et al., 2010).

Fig. 5. Standardised precipitation index (SPI) for October 1978 through September 2008 with a time scale of 1 months.
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Fig. 6. Annual EVI values of late-April from 2001 to 2010.
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indicates a severe drought occurred in 2008 while the maximum SPI
value belongs to 1995. Afterwards, we have also examined the spatio-
temporal patterns of EVI values of late-April (the most monthly EVI
value) and mid-October (the least monthly EVI value) through the
entire study region from 2001 to 2010. Results of both SPI and EVI

testify a severe drought occurrence in 2008 which was selected as the
basis of DSM (Fig. 6).

In other words, considering the fact that there is no satellite imagery
archive belonging to 1995 (i.e. maximum SPI value), we tried to use a
pixel based ratio of average and minimum EVI values (i.e. 2006 and

Fig. 7. Annual EVI values of mid-October from 2001 to 2010.
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2008) for further identification of the least and the most vegetation loss
locations. As EVI is found to be linearly correlated with green leaf area
index (LAI) in crop fields (Jiang et al., 2008), it will be maximized when
it is representing highest leaf biomass. Therefore, here in the present
study, pixels with most positive changes in EVI value, representing an
increase in the biomass amount of the pixel, were detected as the less
sensitive pixels to drought. However, pixels with the most negative
changes were considered as more sensitive (Fig. 7). In other words,
considering the fact that leaf biomass will be reduced as results of
drought impacts, the word ‘less sensitive’ has been chosen when leaf
biomass is not negatively affected by drought. Nonetheless, the word
‘more sensitive’ is selected for the opposite condition.

The proposed model of DSM is based on the OC-SVM classification
technique that could be considered as a quantitative soft computing
method within which less subjectivity is guaranteed. In this respect,
following the accomplishments of necessary data pre-processing steps,
each criterion of the study area was divided into a 278 m ∗ 278 m
square grid, which contains 320,563 pixels, laid out in an irregular
boundary. Accordingly, after importing the pre-processed data into the
MatLab environment, an evaluation matrix is then constructed to be
used in the classification process. Experimental results not only showed
that OC-SVM is more efficient compared to TC-SVM algorithm while
producing results of similar accuracy, but also it requires less time and
storage space to run compared to TC-SVM (Manevitz and Yousef, 2002;
Senf et al., 2006). As a result, two OC-SVMs were applied by an RBF
kernel function to construct the respective DSM in a further step
(Fig. 8).

Finally, in the present study, the proposed DSM is divided into five
sensitivity classes namely very low, low, moderate, high and very high
using 2D scatter plots and nine fuzzy if-then rules (Fig. 9).

Fig. 9 illustrates how fuzzy if-then rules have been used for pattern
classification problems while Fig. 10 represents final DSM of Kerman-
shah Province which has been elaborated using OC-SVM algorithms and

corresponding geo-data layers including EVI, elevation, slope, aspect
and geomorphic units.

4.1. Validation of the results

Validation is truly an essential step in the development of any
predictive model and estimation of its reliability measure. The predic-
tion efficiency of any geospatial predictive model and its resultant
output (i.e. proposed DSM) is usually estimated by using independent
information posterior to map elaboration. Therefore, here where we
have used a separate training set, the accuracy of the proposed DSM
technique in Kermanshah Province was evaluated by calculating
relative operating characteristics (ROC) which depict the capability of
a binary algorithm system as its discrimination threshold changes
(Fawcett, 2006; Feizizadeh et al., 2014; Sabokbar et al., 2014). We
have also used a simple overlay technique to show the percentage of
known changes of EVI in various sensitivity classes.

Considering the ROC method, the area under the ROC curve (AUC)
values, varying between 0.5 and 1.0, is used to evaluate the accuracy of
the DSM. The AUC defines the accuracy of the proposed probabilistic
model through describing the model ability to reliably predict the
occurrence or non-occurrence of an event. The ideal model shows an
AUC value close to 1.0, whereas a value close to 0.5 indicates
inaccuracy in the model (Fawcett, 2006; Roodposhti et al., 2014;
Shahabi and Hashim, 2015). In order to apply the ROC method, a
concise and representative dataset was prepared using randomly
selected 278 first negative along with 278 first positive points of EVI
change throughout the study area. As it is assumed that changing EVI
values are representative of drought impacts on vegetation cover, these
points will be further used to evaluate the accuracy of sensitivity maps
proposed by two OC-SVM algorithms. The AUC value of ROC curve for
the output map was found to be 0.809, with an estimated standard error

Fig. 8. Resultant outcome of each OC-SVM including: (a) more, and (b) less sensitive classes of proposed DSM scheme.

Fig. 9. Selected if-then rules for 2D scatter plots to interactively classify two categories of
more and less sensitive pixels.

Fig. 10. Resultant sensitivity map of proposed DSM scheme along with the most negative
and the most positive changes test data points of EVI.
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of 0.01 (Fig. 11).
The DSM results were also verified using the test inventory data

points itself. Accordingly, these 278 first negative along with 278 first
positive points of EVI change locations were overlaid on the proposed
DSM map (Fig. 12). The result shows that 197 data points which
represent vegetation lost (70.86% of all test data for negative changes)
overlaid on the high and very high sensitive patches, which they only
cover 14,657 km2 (59.1%) of the study area while only 1 test data
appears in the very low sensitive zone.

In addition to the above, it should be mentioned that about 185
(66.5% of all test data for positive changes of EVI value) data points
which represent positive change in EVI value overlaid on the low and
very low sensitivity zones, which they only cover 3963 km2 (15.9%) of
the study region while only 10 test data appears in the very high
sensitive class.

5. Short discussion and conclusions

Considering the most important factors which cause the present
conditions of sensitivity to drought being in place in the study region,
there was a demand to conduct a reliable DSM for vegetation cover. The
reliability of DSM depends not only on the presence of concise and
representative database, in terms of data scale and accuracy, but also on
the selection of the appropriate DIs for and drought identification and
severity evaluation. Regardless of data scale and accuracy, the present
study aimed to explore DSM of Kermanshah by using both climatic and
satellite-based DI which were used to confirm mild and severe drought
occurrence and resultant vegetation loss. Further, an objective classi-
fication scheme along with four different drought-related geo-data
layers were used in order to produce a reliable DSM.

Results of the analysis showed notable spatio-temporal variation in
terms of vegetation sensitivity to drought phenomena throughout the
study area. In this respect, the elevation class of 1500 to 2000 m, slope
classes between 4 and 32 degree, aspect classes of south and south-west
(May) or east and north-east (October) and Zagros Orogenic Belt are the
most affected from drought periods. However, slope classes between 2
and 4 degree (both in May and October) or more that 32 degrees
(October), elevation less than 1500 m (both in May and October) or
more than 2500 m (October) and Sanandaj-Sirjan geomorphic zone are
the least affected by drought periods.

According to the obtained results, the resistance of vegetation to
drought occurrence may be mediated through the effects of topography
(elevation, slope and aspect) on soils and microclimate. In this respect,
the obtained results of proposed DSM testify that plants in higher
elevations (i.e. above 1500 m to 2500 m) typically are more affected by
drought, compared with the similar plants of lower elevation (below
1500 m). This is mainly correspondent to the negative correlation
between slope gradient and soil moisture which is statistically more
significant in higher elevations where steep slopes prevail. On the other
hands, depth of soil horizons is significantly increased by a decrease in
elevation. Accordingly, soils at lower elevations of the slope (i.e.
Cambiosol and Litosol) may have larger sources of water compared to
the soils in higher elevation. Natural vegetation cover is relatively
drought-tolerant at elevations above 2500 m because of consistent
snow coverage which increases soil moisture and decreases environ-
mental temperature.

Consequently, the spatial variation in soil moisture is also controlled
by slope angle and aspect. Here, drought impacts on vegetation loss
more obvious within southern and eastern slope and the slope angle
more than 8 degrees while it is less obvious in northern and western
slope and the slope angle between the 0–4. The magnitude soil moisture
was found to decrease not only with an increase in angle of slope and
but also with a topographic solar radiation index derived from slope
angle and slope aspect.

Considering geomorphic units criterion, it has been found that
Sanandaj-Sirjan unit is less sensitive to the occurred drought events
compared to different parts of Zagros Orogenic Belt (i.e. Zagros Thrust
or Folded Zagros zone). This is mainly related to some primary
variables such as the surface materials and elevation which further
affects other secondary variables including temperature, evapotran-
spiration and snow accumulation coefficient.

As a matter of fact, this study not only presents an integrated
strategic DSM framework with an emphasis on solving the decision
problem by using an objective procedure. In other words, this article
introduces the use of the enhanced vegetation index (EVI) as an
indicator of soil moisture while it focuses on producing a drought
sensitivity map (DSM) for vegetation cover using two one-class support
vector machine algorithms. Finally, considering the fact that, the

Fig. 11. ROC curve for the proposed DSM using two OC-SVM class.

Fig. 12. Histogram of test data overlay showing the relative areas for each sensitivity class (each class is labeled with the number of the observed negative or positive test data
accordingly).
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proposed schematic framework has the advantage of satellite imagery
archive as ground truth; it can be used for production DSM of different
local or regional scales. On the other hand, the proposed DSM scheme
can be further extended by using more drought-related criteria includ-
ing vegetation type, soil depth, drainage density etc. through different
case studies.
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